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Complex networks

Yeast protein interaction network Internet topology in 2001
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Scale-free phenomenon
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Loglog plot of degree sequences in AS graph in Internet in 1997 (FFro7)
and in the collaboration graph among mathematicians
(http ://www.oakland. edu/enp)



Modeling complex networks

e Inhomogeneous Random Graphs:
Static random graph, independent edges with inhomogeneous edge occu-
pation probabilities, yielding scale-free graphs.
(BJRO7, CLO2, CLO3, BDM-LO5, CLO6, NRO6, EHHOE,...)

e Configuration Model:
Static random graph with prescribed degree sequence.
(MR95, MR98, RNO4, HHVO5, EHHZ06, HHZ07, JLO7, FRO7,...)

e Preferential Attachment Model:
Dynamic random graph, attachment proportional to degree plus constant.
(BA99, BRSTO1, BRO3, BR0O4, M05, BO7, HH07,...)



Configuration model

Let n be the number of vertices. Consider i.i.d. sequence of degrees
Dl; DQ, ce 7Dn7 with

P(D, > k) =c.k 1+ 0o(1)),

where ¢, is normalizing constantand 7 > 1.



Power law degree sequence CM
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Configuration model: graph construction
How to construct graph with above degree sequence?

e Assign to vertex j degree D;.

L, = Z D,
1=1

is total degree. Assume L, is even.
Incident to vertex ¢ have D; ‘stubs’ or half edges.



Configuration model: graph construction
How to construct graph with above degree sequence?

e Assign to vertex j degree D;.

L, = Z D,
1=1

is total degree. Assume L, is even.
Incident to vertex ¢ have D; ‘stubs’ or half edges.

e Connect stubs to create edges as follows:

Number stubs from 1 to L,, in any order.

First connect first stub at random with one of other L,, — 1 stubs.

Continue with second stub (when not connected to first) and so on, until all
stubs are connected...



Distances in configuration model

H, is graph distance between uniform pair of connected vertices in graph.
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e When 7 € (2, 3), (Norros+Reittu04, HHZ07)

H ~ 2loglogn |
|log (7 —2)]




Distances in configuration model

H, is graph distance between uniform pair of connected vertices in graph.

e When ™ > 3and v > 1 (HHVO03)

E[D(D — 1
H, ~log,n, with v = | IE(Z[D] )
e When 7 € (2, 3), (Norros+Reittu04, HHZ07)
H 2loglogn |
|log (7 — 2)]

e When 7 € (1,2), (EHHZ06)

H, uniformly bounded.



Consequences and proof

Proof relies on
(a) extreme value theory when 7 € [1, 2);
(b) coupling of neighborhood of vertices to branching process when 7 > 2,

When 7 > 2, CM is locally tree-like, and v > 1 is equivalent to branch-
ing process being supercritical, and giant component existing.



Consequences and proof

Proof relies on
(a) extreme value theory when 7 € [1, 2);
(b) coupling of neighborhood of vertices to branching process when 7 > 2,

When 7 > 2, CM is locally tree-like, and v > 1 is equivalent to branch-
ing process being supercritical, and giant component existing.

Extensions:
e Fluctuations around leading order are uniformly bounded, and ‘limiting
distribution’ computed in terms of martingale limit branching process.

e Diameter of graph is maximal distance between any pair of connected
vertices.

Diameter CM is O(logn) when P(D; > 3) < 1 (FR07),

while of order log log n when 7 € (2,3) and P(D; > 3) = 1 (HHZ07).



Comparison Internet data
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Number of AS traversed in hopcount data (blue) compared to the model
(purple) with 7 = 2.25, n = 10, 940.



Preferential attachment

In preferential attachment models, network is growing in time, in such a way
that new vertices are more likely to be connected to vertices that already
have high degree.



Preferential attachment

In preferential attachment models, network is growing in time, in such a way
that new vertices are more likely to be connected to vertices that already
have high degree.

e At time ¢, a single vertex is added to the graph with m edges emanating
from it. Probability that an edge connects to the ;" vertex is proportional to

di(t —1)+ 09,

where d;(t) is degree vertex i at time t, § > —m is parameter model.



Preferential attachment

In preferential attachment models, network is growing in time, in such a way
that new vertices are more likely to be connected to vertices that already
have high degree.

e At time ¢, a single vertex is added to the graph with m edges emanating
from it. Probability that an edge connects to the ;" vertex is proportional to

di(t —1)+ 09,
where d;(t) is degree vertex i at time t, § > —m is parameter model.

e Different edges can attach with different updating rules:

(a) intermediate updating degrees with self-loops (BA99, BRO4, BRST01)
(b) intermediate updating degrees without self-loops;

(c) without intermediate updating degrees, i.e., independently.

(Graphs in cases (b-c) have advantage of being connected.)



Scale-free nature PA

Yields power-law degree sequence with power-law exponent
T=34+09/m € (2,00).
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Distances PA models

Diam,, is diameter in PA model of size n. Then
e Forallm > 2and 7 € (3, 00) (HHO7)

Diam,, = ©(logn).

e Forallm > 2and 7 = 3 (BR0O4, HHO7)

logn
Diam,, > 5

log logn’
while, for model (a), matching upper bound exists (BR04).
e Forallm > 2and 7 € (2,3) (HHO7)

Diam,, < C'loglogn.



Universality PA models

First evidence of strong form of universality:
random graphs with similar degree structure share similar behavior.

For random graphs, universality predicted by physics community...

Universality is leading paradigm in statistical physics.
Only few examples where universality can be rigorously proved.

Key question: Can universality be proved for processes such as Ising
model or contact process on random graphs?

More information on power-law and Erdés-Rényi random graphs:
www.win.tue.nl/~rhofstad/NotesRGCN.pdf






Small-world phenomenon
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Distances in social network (Small-World Project Watts (2003))



